
1

Folds in Haskell

Mark P Jones

Portland State University

2

Folds!

! " A list xs can be built by applying the (:) and []
operators to a sequence of values:

 xs = x1 : x2 : x3 : x4 : … : xk : []

! " Suppose that we are able to replace every use of
(:) with a binary operator (!), and the final []
with a value n:

 xs = x1 ! x2 ! x3 ! x4 ! … ! xk ! n

! " The resulting value is called fold (!) n xs

! " Many useful functions on lists can be described in
this way.

3

Graphically:

:

:

:

[]

e1

e2

e3

!

!

!

n

e1

e2

e3

f

f = foldr (!) n

4

Example: sum

:

:

:

[]

e1

e2

e3

+

+

+

0

e1

e2

e3

sum = foldr (+) 0

5

Example: product

:

:

:

[]

e1

e2

e3

*

*

*

1

e1

e2

e3

product = foldr (*) 1

6

Example: length

:

:

:

[]

e1

e2

e3

cons

cons

cons

0

e1

e2

e3

cons x ys = 1 + ys

length = foldr (\x ys -> 1 + ys) 0

7

Example: map

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys = f x:ys

map f = foldr (\x ys -> f x : ys) []

8

Example: filter

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys
 = if p x
 then x:ys
 else ys

filter p = foldr (\x ys -> if p x then x:ys else ys) []

9

Formal Definition:

foldr :: (a->b->b) -> b -> [a] -> b

foldr cons nil [] = nil

foldr cons nil (x:xs) = cons x (foldr cons nil xs)

10

Applications:

sum = foldr (+) 0

product = foldr (*) 1

length = foldr (\x ys -> 1 + ys) 0

map f = foldr (\x ys -> f x : ys) []

filter p = foldr c []

 where c x ys = if p x then x:ys else ys

xs ++ ys = foldr (:) ys xs

concat = foldr (++) []

and = foldr (&&) True

or = foldr (||) False

11

Patterns of Computation:

! " foldr captures a common pattern of computations
over lists

! " As such, it’s a very useful function in practice to
include in the Prelude

! " Even from a theoretical perspective, it’s very
useful because it makes a deep connection
between functions that might otherwise seem
very different …

! " From the perspective of lawful programming, one
law about foldr can be used to reason about
many other functions

12

A law about foldr:

! " If (!) is an associative operator with unit n, then
 foldr (!) n xs ! foldr (!) n ys
 = foldr (!) n (xs ++ ys)

! " (x1 ! … ! xk ! n) ! (y1 ! … ! yj ! n)
 = (x1 ! … ! xk ! y1 ! … ! yj ! n)

! " All of the following laws are special cases:
sum xs + sum ys = sum (xs ++ ys)

product xs * product ys = product (xs ++ ys)

concat xss ++ concat yss = concat (xss ++ yss)

and xs && and ys = and (xs ++ ys)

or xs || or ys = or (xs ++ ys)

13

foldl:

! " There is a companion function to foldr
called foldl:
foldl :: (b -> a -> b) -> b -> [a] -> b

foldl s n [] = n

foldl s n (x:xs) = foldl s (s n x) xs

! " For example:

 foldl s n [e1, e2, e3]
 = s (s (s n e1) e2) e3
 = ((n `s` e1) `s` e2) `s` e3

14

foldr vs foldl:

snoc

snoc

snoc

nil

e3

e2

e1

cons

cons

cons

nil

e1

e2

e3

foldr foldl

15

Uses for foldl:

! " Many of the functions defined using foldr can be
defined using foldl:

 sum = foldl (+) 0

 product = foldl (*) 1

! " There are also some functions that are more
easily defined using foldl:

 reverse = foldl (\ys x -> x:ys) []

! " When should you use foldr and when should you
use foldl? When should you use explicit recursion
instead?

16

foldr1 and foldl1:

! " Variants of foldr and foldl that work on non-
empty lists:

 foldr1 :: (a -> a -> a) -> [a] -> a

 foldr1 f [x] = x

 foldr1 f (x:xs) = f x (foldr1 f xs)

 foldl1 :: (a -> a -> a) -> [a] -> a

 foldl1 f (x:xs) = foldl f x xs

! " Notice:
!" No case for empty list

!" No argument to replace empty list

!" Less general type (only one type variable)

17

Uses of foldl1, foldr1:

From the prelude:
minimum = foldl1 min

maximum = foldl1 max

Not in the prelude:
commaSep = foldr1 (\s t -> s ++ ", " ++ t)

18

Example: Grouping

group n = takeWhile (not.null)

 . map (take n)

 . iterate (drop n)

"abcdefg"

["abcdefg", "defg", "g", "", "", "", …]

["abc", "def", "g", "", "", "", …]

["abc", "def", "g"]

19

Example: Adding Commas

group n = reverse

 . foldr1 (\xs ys -> xs++","++ys)

 . group 3

 . reverse

”1234567"

“7654321”

[”765", ”432", ”1"]

“765,432,1”

“1,234,567”

20

Example: transpose

transpose :: [[a]] -> [[a]]

transpose [] = []

transpose ([] : xss) = transpose xss

transpose ((x:xs) : xss)
 = (x : [h | (h:t) <- xss])
 : transpose (xs : [t | (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]

21

Example: say

Say> putStr (say "hello")

H H EEEEE L L OOO

H H E L L O O

HHHHH EEEEE L L O O

H H E L L O O

H H EEEEE LLLLL LLLLL OOO

Say>

22

… continued:

say = ('\n':)

 . unlines

 . map (foldr1 (\xs ys->xs++" "++ys))

 . transpose

 . map picChar

where

 picChar 'A' = [" A ",

 " A A ",

 "AAAAA",

 "A A",

 "A A"]

etc…

23

Composition and Reuse:
Say> (putStr . concat . map say . lines . say) "A"

 A

 A A

 AAAAA

 A A

 A A

 A A

 A A A A

 AAAAA AAAAA

 A A A A

 A A A A

 A A A A A

 A A A A A A A A A A

AAAAA AAAAA AAAAA AAAAA AAAAA

A A A A A A A A A A

A A A A A A A A A A

 A A

 A A A A

AAAAA AAAAA

A A A A

A A A A

 A A

 A A A A

AAAAA AAAAA

A A A A

A A A A

Say>

24

Summary:

! " Folds on lists have many uses

! " Folds capture a common pattern of
computation on list values

! " In fact, there are similar notions of fold
functions on many other algebraic
datatypes …)

